首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16846篇
  免费   1748篇
  国内免费   3478篇
  2024年   12篇
  2023年   347篇
  2022年   445篇
  2021年   625篇
  2020年   763篇
  2019年   828篇
  2018年   792篇
  2017年   839篇
  2016年   853篇
  2015年   812篇
  2014年   881篇
  2013年   1216篇
  2012年   748篇
  2011年   841篇
  2010年   666篇
  2009年   923篇
  2008年   859篇
  2007年   932篇
  2006年   862篇
  2005年   799篇
  2004年   695篇
  2003年   640篇
  2002年   577篇
  2001年   496篇
  2000年   458篇
  1999年   430篇
  1998年   336篇
  1997年   332篇
  1996年   319篇
  1995年   301篇
  1994年   268篇
  1993年   268篇
  1992年   251篇
  1991年   195篇
  1990年   206篇
  1989年   176篇
  1988年   150篇
  1987年   150篇
  1986年   106篇
  1985年   139篇
  1984年   98篇
  1983年   65篇
  1982年   130篇
  1981年   79篇
  1980年   51篇
  1979年   36篇
  1978年   22篇
  1977年   14篇
  1976年   9篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
E. D. Fajer 《Oecologia》1989,81(4):514-520
Summary Little is known about the effects of enriched CO2 environments, which are anticipated to exist in the next century, on natural plant-insect herbivore interactions. To begin to understand such effects on insect growth and survival, I reared both early and penultimate instar larvae of the buckeye, Junonia coenia (Lepidoptera: Nymphalidae), on leaves from one of their major hostplants, plantain, Plantago lanceolata (Plantaginaceae), grown in either ambient (350 PPM) or high (700 PPM) CO2 atmospheres. Despite consuming more foliage, early instar larvae experienced reduced growth on high CO2-grown compared to ambient CO2-grown leaves. However, survivorship of early instar larvae was unaffected by the CO2 treatment. Larval weight gain was positively correlated with the nitrogen concentration of the plant material and consumption was negatively correlated with foliar nitrogen concentration, whereas neither larval weight gain nor consumption were significantly correlated with foliar water or allelochemical concentrations. In contrast, penultimate instar larvae had similar growth rates on ambient and high CO2-grown leaves. Significantly higher consumption rates on high CO2-grown plants enabled penultimate instar larvae to obtain similar amounts of nitrogen in both treatments. These larvae grew at similar rates on foliage from the two CO2 treatments, despite a reduced efficiency of conversion of ingested food (ECI) on the low nitrogen, high CO2-grown plants. However, nitrogen utilization efficiencies (NUE) were unaffected by CO2 treatment. Again, for late instar larvae, consumption rates were negatively correlated with foliar nitrogen concentrations, and ECI was also very highly correlated with leaf nitrogen; foliar water or allelochemical concentrations did not affect either of these parameters. Differences in growth responses of early and late instar larvae to lower nitrogen, high-CO2 grown foliage may be due to the inability of early instar larvae to efficiently process the increased flow of food through the gut caused by additional consumption of high CO2 foliage.  相似文献   
82.
Photoinhibition of white clover seed germination at low water potential   总被引:1,自引:0,他引:1  
Photosensitivity of germination of white clover ( Trifolium repens L. cv. Podkowa) seeds was studied under water deficit (low water potential) conditions at 25°C. The seeds showed negative photoblastism, which was most pronounced at -0.03 MPa polyethylene glycol solution. Inhibition was observed at two different wavelength bands with maxima at 660 nm (R) and around 730 nm (FR). Red light acted identically to white light (maximum inhibition ca 50%). The effect of far-red illumination was less inhibitory (20–30%). The photoresponse required long illuminations (3 h exposures); saturation level was at 0.1 W m−2, independently of the light quality. White clover seed germination showed no reversibility of the effects of R and FR light. Prolonged illumination with R and FR increased the inhibition, and intermittent illumination had a higher effect than a continuous one. It was concluded that the photoinhibition of germination of seeds of Trifolium repens involves a reaction dependent on the rate of phytochrome interconversion, a property that is characteristic for the high irradiance reaction.  相似文献   
83.
Differences in water binding were measured in the leaf cells ofMesembryanthemum crystallinum L. plants grown under high-salinity conditions by using nuclear-magnetic-resonance (NMR) imaging. The 7-Tesla proton NMR imaging system yielded a spatial resolution of 20·20·100 m3. Images recorded with different spin-echo times (4.4 ms to 18 ms) showed that the water concentrations in the bladder cells (located on the upper and lower leaf surface), in the mesophyll cells and in the water-conducting vessels were nearly identical. All of the water in the bladder cells and in the water-conducting vessels was found to be mobile, whilst part of the water in the mesophyll cells was bound. Patches of mesophyll cells could be identified which bound water more strongly than the surrounding mesophyll cells. Optical investigations of leaf cross-sections revealed two types of mesophyll cells of different sizes and chloroplast contents. It is therefore likely that in the small-sized mesophyll cells water is strongly bound. A long-term asymmetric water exchange between the mesophyll cells and the bladder cells during Crassulacean acid metabolism has been described in the literature. The high density of these mesophyll cells in the lower epidermis is a possible cause of this asymmetry.Abbreviations CAM Crassulacean acid metabolism - NMR nuclear magnetic resonance - TE spin-echo time  相似文献   
84.
During ageing of the short-lived pollen grains of Cucurbita pepo L., water loss was examined in relation to viability using biophysical (1H-nuclear magnetic resonance, NMR) and cytological methods (fluorochromatic reaction test, freezefracture and scanning electron microscopy). A semi-logarithmic representation of the pollen weight loss demonstrated the complexity of the dehydration process. A the study of proton loss using 1H-NMR indicated that two major releases water of had taken place, each with different flux rates. Pulse 1H-NMR experiments showed the occurrene of non-exponential signal decay as a function of time, indicating the existence of different fractions of water in a pollen grain sample. These fractions leave the pollen grain at different times during pollen dehydration, and one of them (that of the so-called vital water) can be related to pollen viability. The quantity of protons giving a signal during pulse 1H-NMR experiments was very low when the pollen grains were judged to be dead according to the fluorochromatic test. Freeze-fracture replicas of these dead pollen grains (less than 25% water content) showed that the plasma membrane had become detached from the intine surface; this ultrastructural feature might therefore be involved in the loss of pollen viability.Abbreviations A initial amplitude of the NMR signal - A2 quantity of water charcterized by T2-2 - A5 quantity of water characterized by T2–5 - FCR fluorochromatic reaction - NMR nuclear magnetic resonance - T2 transverse relaxation time - T2-2 T2 measured with 2 ms between each pulse of radiofrequency - T2–5 T2 measured with 5 ms between each pulse of radiofrequency  相似文献   
85.
The stationary radial volume flows across maize (Zea mays L.) root segments without steles (sleeves) were measured under isobaric conditions. The driving force of the volume flow is an osmotic difference between the internal and external compartment of the root preparations. It is generated by differences in the concentrations of sucrose, raffinose or polyethylene glycol. The flows are linear functions of the corresponding osmotic differences ( ) up to osmotic values which cause plasmolysis. The straight lines obtained pass through the origin. No asymmetry of the osmotic barrier could be detected within the range of driving forces applied ( =±0.5 MPa), corresponding to volume-flow densities of jv, s=±7·10–8 m·s–1. Using the literature values for the reflection coefficients of sucrose and polyethylene glycol in intact roots (E. Steudle et al. (1987) Plant Physiol.84, 1220–1234), values for the sleeve hydraulic conductivity of about 1·10–7 m·s–1 MPa–1 were calculated. They are of the same order of magnitude as those reported in the literature for the hydraulic conductivity of intact root segments when hydrostatic pressure is applied.Abbreviations and symbols a s outer surface of sleeve segment - c concentration of osmotically active solute - j v, s radial volume flow density across sleeve segment - Lps hydraulic conductivity of sleeves - Lpr hydraulic conductivity of intact roots - N thickness of Nernst diffusion layer - reflection coefficient of root for solute - osmotic value of bulk phase - osmotic coefficient  相似文献   
86.
Abstract Water storage and nocturnal increases in osmotic pressure affect the water relations of the desert succulent Ferocactus acanthodes, which was studied using an electrical circuit analog based on the anatomy and morphology of a representative individual. Transpiration rates and osmotic pressures over a 24-h period were used as input variables. The model predicted water potential, turgor pressure and water flow for various tissues. Plant capacitances, storage resistances and nocturnal increases in osmotic pressure were varied to determine their role in the water relations of this dicotyledonous succulent. Water coming from storage tissues contributed about one-third of the water transpired at night: the majority of this water came from the nonphotosynthetic, water storage parenchyma of the stem. Time lags of 4 h were predicted between maximum transpiration and maximum water uptake from the soil. Varying the capacitance of the plant caused proportional changes in osmotically driven water movement but changes in storage resistance had only minor effects. Turgor pressure in the chlorenchyma depended on osmotic pressure, but was fairly insensitive to doubling or halving of the capacitance or storage resistance of the plant. Water uptake from the soil was only slightly affected by osmotic pressure changes in the chlorenchyma. For this stem succulent, the movement of water from the chlorenchyma to the xylem and the internal redistribution of water among stem tissues were dominated by nocturnal changes in chlorenchyma osmotic pressure, not by transpiration.  相似文献   
87.
Diurnal water storage in the stems of Picea sitchensis (Bong.) Carr.   总被引:1,自引:1,他引:0  
Abstract. Two models of the relationship between diurnal variation in shoot water potential and transpiration in 14-year-old Picea sitchensis (Bong.) Carr. were compared. The first model was a physiologically based resistance-capacitance (R-C) analogue with its associated differential equations. The second was a non-physiological discrete-difference (D-D) or stochastic transfer function model. The RC model included only the effect of water storage in the phloem and bark while the D-D model implicity included all storage mechanisms. The R-C and D-D models explained similar fractions (62% and 68% respectively) of the variation in shoot water potential due to diurnal changes in transpiration rate. However, the D-D model had fewer parameters than the R-C model. The results from the D-D model showed that the resistance to flow from soil to shoots along the trunk, (RT), was 5 × 103 MPa kg-1s and the capacitance of the phloem and bark treated as a single store, (Cs), was 1.6 kg MPa-1. It is suggested that the resistance to flow into storage (Rs) is much greater than RT and can be disregarded. A non-linear version of the D-D model suggested [hat resistance to flow in the trunk increases with increasing transpiration rate.  相似文献   
88.
Previous studies have identified a set of highly phosphorylated proteins of 23–25 kDa accumulated during normal embryogenesis of Zea mays L. and which disappear in early germination. They can be induced precociously in embryos by abscisic acid (ABA) treatment. Here the synthesis and accumulation of this group of proteins and their corresponding mRNAs were examined in ABA-deficient viviparous embryos at different developmental stages whether treated or not with ABA, and in water-stressed leaves of both wild-type and viviparous mutants.During embryogenesis and precocious germination of viviparous embryos the pattern of expression of the 23–25 kDa proteins and mRNAs closely resembles that found in non-mutant embryo development. They are also induced in young viviparous embryos by ABA treatment. In contrast, leaves of ABA-deficient mutants fail to accumulate mRNA in water stress, yet do respond to applied ABA. In water-stressed leaves of wild type plants the mRNAs are induced and translated into 4 proteins with a molecular weight and isoelectric point identical to those found in embryos.These results indicate that the 23–25 kDa protein set is a new member of the recently described class or proteins involved in generalized plant ABA responses.The different pattern of expression for the ABA-regulated 23–25 kDa proteins and mRNAs found in embryo and in vegetative tissues of viviparous mutants is discussed.  相似文献   
89.
Spatial variations in soil processes regulating mineral N losses to streams were studied in a small watershed near Toronto, Ontario. Annual net N mineralization in the 0–8 cm soil was measured in adjacent upland and riparian forest stands using in situ soil incubations from April 1985 to 1987. Mean annual rates of soil N mineralization and nitrification were higher in a maple soil (93.8 and 87.0 kg.ha–1) than in a pine soil (23.3 and 8.2 kg.ha–1 ). Very low mean rates of mineralization (3.3 kg.ha–1) and nitrification (3.4 kg.ha–1) were found in a riparian hemlock stand. Average NO3-N concentrations in soil solutions were 0.3–1.0 mg.L–1 in the maple stand and >0.06mg.L–1 in the pine stand. Concentrations of NO3–N in shallow ground water and stream water were 3–4× greater in a maple subwatershed than in a pine subwatershed. Rapid N uptake by vegetation was an important mechanism reducing solution losses of NO3–N in the maple stand. Low rates of nitrification were mainly responsible for negligible NO3–N solution losses in the pine stand.  相似文献   
90.
Helicopters can be used to collect water samples from many lakes over a wide geographic area within a relatively short time period. Here we report the results from an experiment in which sequential water samples from a lake were collected first from a nonmotorized boat and then immediately afterward from a helicopter. No significant differences were found between the means of the measurement of 20 chemical parameters for the two methods of collection. When compared to obtaining samples from a boat, collection of samples from a helicopter platform had no effect on the content of the water samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号